

Course Title: College Composition				
Course Prefix &	Lecture Hours: 4	Lab Hours: 0	Credit Hours: 4	
No.: ENGL101N				
Department: Arts, Humanities, Communications & Design				
Program: English				
Revision Date: 1/2021				

Prerequisites: Accuplacer placement test or SAT score

Required Accuplacer Score:Writing Conventions:250 or higherWritePlacer:5 or higher

Required SAT Score after March 2016:

Combined score of Critical Reading & Writing of at least a 470.

Students who score below the required Accuplacer or SAT scores may still be eligible for ENGL101 with a co-requisite workshop. See NCC Placement Score Grid document.

Entrance Skills:

- Basic computer skills
- College level textbook reading skills
- College level organizational skills.
- College level note-taking skills
- College level information literacy to conduct research using data-bases and websites
- College level analytic thinking skills to develop thesis questions
- College level synthetic thinking skills to evaluate and use sources in a research paper based on the student's own thesis statements.

Catalog Description: In this course, students learn to write clearly and effectively for defined audiences through a variety of strategies. Emphasis is on the writing process from pre-writing through drafting, revising and editing. Students gain confidence through learning the basic principles of effective expository and persuasive composition and the application of these principles in writing essays and documented research papers. Students become aware of the variety of strategies, behaviors, habits and attitudes and choose those that help them improve. Students will also read and examine a wide variety of writers and writing styles. This class is a core requirement for all degree programs at NCC. Students who do not satisfactorily place into ENGL101N with the required Accuplacer or SAT scores will be required to enroll in the corresponding Co-Requisite Workshop.

Prerequisite: Accuplacer score or SAT score

Course Competencies:

Competency (Knowledge and Skills)	Critical Thinking Level	Linked to Program Outcome(s) #
Students will be able to: 1. Use the following steps in the writing process as the way to develop writing product • Prewrite • Write/draft • Revise • Edit	• Synthesis	
 2. Adapt the writing process to produce writing product that Has a focus Is developed Is organized Uses language appropriate to the purpose and audience or uses standard written English Uses appropriate format Is a communicating, readable document 	Application	
3. Recognize writing problems and fix them	KnowledgeComprehensionAnalysis	
4. Compose writing as part of a complex process involving recursive steps	• Synthesis	

Course Outline:

- I. Generate ideas
 - A. free write
 - B. brainstorm
 - C. cluster
 - D. outline
 - E. journal
 - II. Define audience
 - III. Thesis and organization
 - IV. Modes of writing
 - V. Construct drafts
 - VI. Revise
 - VII. Research techniques

Performance Evaluation:

Formative Assessments	Summative Assessments	
 Four draft essays including narrative, process, cause/effect, and argument/persuasive. Grammar and concept quizzes. Peer workshopping/editing 	 Four final essays including narratives, process, cause/effect, and argument/persuasive. Oral defense of the argument essay 	

Method of Instruction:

- Lecture
- Group discussion
- Peer editing
- Conferencing
- Frequent writing in and out of class
- Self, peer and faculty input.

Instructional Facilities:

- A classroom equipped with standard computer and projection options.
- Occasional use of a computer lab for student research and writing).

Revision History:

- April 2009, May 2001; May 2013;
- Dates Renumbered: September 2002; June 2004
- April 2013 R. Delude
- January 2015 renumbered
- January 2017: Co-requisite statement added to description/S. Bashalany
- September 2017 Jennifer Tripp
- January 2021 Jennifer Tripp

Course Title: Calculus I				
Course Prefix &	Lecture Hours:4	Lab Hours: 0	Credit Hours:4	
No.: MATH210				
Department: Mathematics				
Program: Mathematics				
Revision Date: 2/2015				

Prerequisites/ Co-requisites: (Explain the need for a prerequisite or a co-requisite) See Appendix 2.*Precalculus MATH120. In order to perform the proper mathematical procedures necessary for calculus, it is imperative that students have mastery of algebra, trigonometry and precalculus material.*

Required Accuplacer Score:60 or higher in arithmetic, 85 or higher in algebra and 78 or higher in college level mathematics.

Entrance Skills: "Without the following skills, competencies and/or knowledge, students entering this course will be highly unlikely to succeed" Include reading, writing and computational skills as well as computer skills. Prior discipline knowledge should also be considered.

In order to be successful in this course, students must be able to read mathematical notation, and perform accurate mathematics using methods from algebra, trigonometry and pre-calculus.

Catalog Description: Describe the course in a clear and succinct manner. Include the overall purpose of the course as well as the requirements. Explain how the course does or does not contribute to degree requirements. Developmental and ESL courses do not count towards degree requirements.

Calculus is introduced through the study of functions, limits, differentiation and higher order derivatives. Derivatives of polynomial, trigonometric, inverse trigonometric, exponential, and logarithmic functions are covered. Problems in optimization, curve sketching and related rates are considered. Integration is introduced by analyzing the definite and indefinite integral. Prerequisite: Placement Test or MATH120 or Permission of instructor.

Course Competencies: Instructors will identify what is expected of students by developing learning competencies. Performance competencies focus on outcomes, results and learning. Competencies are preceded by the statement: "Students will be able to:"

Competency (Knowledge and	Critical Thinking	Linked to Program
Skills)	Level	Outcome(s) #
Students will be able to:		
1. Discuss the notion of a limit	Comprehension	
2. Evaluate limits of algebraic and trigonometric functions	Comprehension and Application	
3. Know and apply the basic rules of differentiation including: power rule, chain rule, product rule, quotient rule, and implicit differentiation	Knowledge, Comprehension, and Application	
4. Accurately find the derivative of trigonometric, inverse trigonometric, exponential, and logarithmic functions	Knowledge, Comprehension, and Application	
5. Use differentiation in applications including: optimization and related rates, and L'Hopital's Rule	Knowledge, Comprehension, and Application	
6. Know and apply the fundamental theorem of calculus	Knowledge, Comprehension, and Application	
7. Evaluate integrals and be able to calculate the area under a curve	Knowledge, Comprehension and Application	

Course Outline: The course outline will provide a general overview of the content that will be included in the course as they relate to the competencies. The first column lists the general content and the second column will allow for subtopics that will be covered.

Content Topic	Subtopics(a., b., etc.)
Limits	a. Definition of a limit b. Finding limits graphically c. Evaluating limits d. Infinite limits
Differentiation Applications of Differentiation	 a. Definition of derivative b. Power rule c. Chain rule d. Product rule e. Quotient rule f. Derivatives of transcendental functions g. Implicit Differentiation a. First and second derivative tests b. Optimization c. Related rates d. L'Hopital's rule
Integration	 a. Fundamental Theorem of Calculus b. Anti-derivatives c. Definite integrals d. Basic Integration techniques e. Area under curves

Performance Evaluation: In this section please explain the different Assessment Tools that will be used to demonstrate student learning. The assessment ideally should include quantitative measures such as standardized tests, essays, locally-developed tests and if applicable, licensure exams. Qualitative measures such as portfolios of student work, written reports, oral presentations and interviews should be included as well.

QuizzesUnit ExamsHomework AssignmentsMid-term and Final ComprehensiveClassroom AssignmentsExaminations	Formative Assessments	Summative Assessments
	Quizzes Homework Assignments Classroom Assignments	Unit Exams Mid-term and Final Comprehensive Examinations

Method of Instruction: Examples include lecture, group discussion field trip, guest speakers, individual instruction, field observation, etc.

- Lecture and discussion
- Readings
- Illustrations and Examples
- Classroom problem solving
- Assigned problems

Instructional Facilities: List the type of classroom and any special facilities which may be required such as audiovisual, maps, lab facilities, etc.

Classroom with sufficient white board space and ENO board.

Revision History: Please include the dates of past revisions and if possible person(s) responsible for the revision.

Updated Feb. 2105

Will this course be taught online? Yes <u>No x</u>

If yes, please complete the Online Course Outline Form.

APPENDIX 1

Bloom's Taxonomy Action Verbs

Definitions	Knowledge	Comprehension	Application	Analysis	Synthesis	Evaluation
Definitions Bloom's Definition Verbs	Knowledge Remember previously learned information. Arrange Define Describe Duplicate Identify Label List Match Memorize Name Order Outline Recognize Relate Repeat Repeat Reproduce Select State	Comprehension Demonstrate an understanding of the facts. Classify Convert Defend Describe Discuss Distinguish Estimate Explain Express Extend Generalized Give example(s) Identify Indicate Infer Locate Paraphrase Predict Recognize Rewrite	Application Apply knowledge to actual situations. Apply Change Choose Compute Demonstrate Discover Dramatize Employ Illustrate Interpret Manipulate Modify Operate Practice Predict Prepare Produce Relate Schedule Show	Analysis Break down objects or ideas into simpler parts and find evidence to support generalizations. Analyze Appraise Breakdown Calculate Categorize Compare Contrast Criticize Diagram Differentiate Discriminate Distinguish Examine Experiment Identify Illustrate Infer Model Outline Point out	Synthesis Compile component ideas into a new whole or propose alternative solutions. Arrange Assemble Categorize Collect Combine Comply Compose Construct Create Design Develop Devise Explain Formulate Generate Plan Prepare Rearrange Reconstruct Relate	Evaluation Make and defend judgments based on internal evidence or external criteria. Appraise Argue Assess Attach Choose Compare Conclude Contrast Defend Describe Discriminate Estimate Estimate Explain Judge Justify Interpret Relate Predict Rate
	Select State	Predict Recognize Rewrite Review Select Summarize Translate	Relate Schedule Show Sketch Solve Use Write	Model Outline Point out Question Relate Select Separate Subdivide	Rearrange Reconstruct Relate Reorganize Revise Rewrite Set up Summarize Synthesize Tell Write	Relate Predict Rate Select Summarize Support Value

APPENDIX 2

Establishing Prerequisites and Corequisites*

A prequisite or a corequisite must be carefully considered when added to a course. Some things to take into consideration when deciding on whether to add a prequisite or corequisite are whether students have a history of requiring outside services such as tutoring, Accuplacer scores, previous success rates of students and course completion rates. Prior discipline knowledge should also be considered. These conditions can be used to explain the need for a prequisite or corequisite.

Prerequisites or corequisites may be established for any of the following purposes:

- a. An outside accrediting body expressly requires the prerequisite. This will be more likely in CTE programs.
- b. The prerequisite course will assure that the student has the skills, concepts, and/or information that is presupposed in terms of the course or program for which is it being established. A student who has not met the prerequisite is highly unlikely to receive a satisfactory grade in the course for which the perquisite is being established.
- c. The corequisite course will assure that a student acquires the necessary skills, concepts and/or information. A student who does not take the corequisite is highly unlikely to receive a satisfactory grade in the class.

*Adapted from Guidelines for Title 5 Regulations Section 55003 Policies for Prerequisites, Corequisites and Advisories on Recommended Preparation

Course Title: Calculus II				
Course Prefix &	Lecture Hours:4	Lab Hours:0	Credit Hours:4	
No.: MATH211				
Department: Mathematics				
Program: Mathematics				
Revision Date:				

Prerequisites/ Co-requisites: (Explain the need for a prerequisite or a co-requisite) See Appendix 2. Calculus I MATH210. In order to perform the proper mathematical procedures necessary for calculus, it is imperative that students have mastery of algebra, trigonometry, and calculus I material.

Required Accuplacer Score: *NA*

Entrance Skills: "Without the following skills, competencies and/or knowledge, students entering this course will be highly unlikely to succeed" Include reading, writing and computational skills as well as computer skills. Prior discipline knowledge should also be considered.

In order to be successful in this course, students must be able to read mathematical notation, and perform accurate mathematics using methods from algebra, trigonometry and calculus I.

Catalog Description: Describe the course in a clear and succinct manner. Include the overall purpose of the course as well as the requirements. Explain how the course does or does not contribute to degree requirements. Developmental and ESL courses do not count towards degree requirements.

This course is a continuation of calculus I. Topics include definite and indefinite integration and the use of calculus in the calculation of areas and volumes. Various integration methods are covered including: integration by parts, trigonometric substitution, and partial fractions. Improper integrals are introduced as well as the study of infinite sequences and series, power series, Taylor series, and determining convergence or divergence of series.: Prerequisite MAH210

Course Competencies: Instructors will identify what is expected of students by developing learning competencies. Performance competencies focus on outcomes, results and learning. Competencies are preceded by the statement: "Students will be able to:"

Competency (Knowledge and Skills)	Critical Thinking Level	Linked to Program Outcome(s) #
Students will be able to:		
1. Find the volume of revolution by the disc and shell methods	Comprehension, Application	
2. Integrate expressions in algebraic, trigonometric, logarithmic, and exponential forms	Application	
3. Integrate by trigonometric substitution, integration by parts, and partial fractions	Application	
4. Evaluate improper integrals	Application	
5. Categorize and solve basic first order differential equations	Comprehension, Application	
6. Select and perform the appropriate test to determine behavior of infinite series	Analysis	
7. Represent functions using Taylor series	Comprehension, Application	
8. Determine the radius of convergence for Taylor series	Comprehension, Application	

Course Outline: The course outline will provide a general overview of the content that will be included in the course as they relate to the competencies. The first column lists the general content and the second column will allow for subtopics that will be covered.

Content Topic	Subtopics(a., b., etc.)
Application of Integration	a. Area under curvesb. Disc method of calculating volumec. Shell method of calculating volume
Integration Techniques	a. Integration by parts b. Trigonometric integrals c. Rationalizing substitutions d. Partial Fractions e. Improper Integrals f. Introduction to differential equations
Sequences and Infinite Series	a. Sequences b. Integral Test c. Ratio Test and Comparison Tests
Power Series	 a. Determine the radius of convergence of power series b. Represent functions using Taylor series c. Determine the radius of convergence for Taylor series

Performance Evaluation: In this section please explain the different Assessment Tools that will be used to demonstrate student learning. The assessment ideally should include quantitative measures such as standardized tests, essays, locally-developed tests and if applicable, licensure exams. Qualitative measures such as portfolios of student work, written reports, oral presentations and interviews should be included as well.

Formative Assessments	Summative Assessments
Quizzes Homework Assignments Classroom Assignments	Unit Exams Mid-term and Final Comprehensive Examinations

Method of Instruction: Examples include lecture, group discussion field trip, guest speakers, individual instruction, field observation, etc.

- Lecture and discussion
- Readings
- Illustrations and Examples
- Classroom problem solving
- Assigned problems

Instructional Facilities: List the type of classroom and any special facilities which may be required such as audiovisual, maps, lab facilities, etc.

Classroom with sufficient white board space and ENO board.

Revision History: Please include the dates of past revisions and if possible person(s) responsible for the revision.

Will this course be taught online? Yes No x

If yes, please complete the Online Course Outline Form.

Course Title: Physics I			
Course Prefix &	Lecture Hours: 3	Lab Hours: 2	Credit Hours : 4
No.: PHYS130N		Recitation	
		Hour:1	
Department: Scien	ce and Engineering	Technology	
Program:			
Revision Date: 1/2016			

Prerequisites/ Co-requisites: MATH110N (A grade of C or better is recommended) or
Required Accuplacer Score: College Level Mathematics Score above53

Entrance Skills: Without the following skills, competencies and/or knowledge, students entering this course will be highly unlikely to succeed: the ability to read a college level textbook, to write college level lab reports and to demonstrate college level math skills.

Catalog Description: Serves as the first semester of a one-year course which surveys the field of physics at a non-calculus level. Topics include force and motion, vectors, gravity, energy and momentum, heat and thermodynamics, and oscillations.

Course Competencies:

Competency (Knowledge	Critical Thinking	Linked to Program
and Skills)	Level	Outcome(s) #
Students will be able to:	77 1 1	
1. Apply mathematical skills, at the algebraic level, to analyze physical situations.	Knowledge, Application, Analysis	
2. Demonstrate problem solving skills in problems concerning physical situations.	Knowledge, Application, Analysis	
3. Explain the relevance and importance of physics to everyday experiences.	Knowledge, Application, Analysis	
4. Demonstrate lab techniques based on the scientific method.	Knowledge, Application	
5. Demonstrate the ability to communicate both qualitative and quantitative information, orally and written.	Comprehension, Application	

Course Outline

Content Topic	Subtopics	
Introduction to the Study of Physics	A. Measurements and Calculations	
	B. Units and Standards	
	C. Unit Conversions	
	D. Problem Solving	
	5	

Motion in One Dimension	A. Distance. Position and Displacement
	B. Speed and Velocity
	C Acceleration
	D Kinematic Equations
	E Free Fall
Motion in Two Dimensions	A. Vectors
	B. Vector Operations
	C. Relative Velocity
	D Projectile Motion
Forces and Motion	A. The Concept of Force and Net Force
	B. Newton's Laws of Motion
	C. Applications of Newton's Laws
	D. Friction
	E. Springs and Elasticity
Circular Motion and Gravitation	A Angular Measure
Circular Motion and Gravitation	B Angular Speed and Velocity
	C. Uniform Circular Motion
	D. Angular Acceleration
	D. Aliguial Acceleration
	E. Newton's Law of Gravitation
Rotational Motion and Fauilibrium	A Rigid Rodies Translations and Rotations
Kotational Wotion and Equilibrium	R Torque
	C. Contor of Growity
	D. Equilibrium and Stability
	E. Detational Dynamics
	E. Rotational Dynamics
Momentum	A Linear Momentum
	B Impulse
	C The Conservation of Linear Momentum
	D Inelastic Collisions
	E Angular Momentum
	E. The Conservation of Angular Momentum
	1. The conservation of Angular Momentum
Energy, Work and Heat	A. Work
	B. Kinetic Energy
	C. Potential Energy
	D. Conservation of Energy
	E Elastic Collisions
	F Power
	G Temperature Thermal Energy and Heat
	U First Law of Thermodynamics
	H. Flist Law of Thermodynamics
	I. Entropy and the Second Law

Thermal Properties of Matter	A. Atomic Model of Matter
	B. Ideal Gasses and Ideal Gas Processes
	C. Thermal Expansion
	D. Specific Heat
	E. Calorimetry
	F. Heat Transfer
Fluids	A. Fluids and Density
	B. Pressure
	C. Buoyancy
	D. Fluids in Motion
	E. Viscosity
Oscillations	A. Simple Harmonic Motion (SHM)
	B. SHM - Springs
	C. SHM - Simple and Physical Pendula
	D. Resonance
	E Damping
	L. Dumping

Performance Evaluation

Formative Assessments	Summative Assessments
Homework Assignments Lab Reports Quizzes	Unit Exams Final Exam

Method of Instruction:

Lecture with Demonstrations Hands on Lab Activities Individual and Collaborative Learning Interactive Computer Activities

Instructional Facilities: Fully equipped Physics Lab with Computer Based Lab Equipment

Suggested Texts and Material:

College Physics: A Strategic Approach; 3rd Edition; Knight, Jones & Field; Pearson 2014

A scientific calculator

Revision History: Date outline Developed: January 1995 Dates of Revisions: August 1998, May 1999, May 2002, May 2004, September 2005 (text and numbering), November 2006 (text), September 2007 (text), September 2011 (text), May 2013 (format) May 2014 – Revised Content and added recitation hour Jan 2016 – Moved waves/sound to Physics II

Outline developed by J. Kalinski Outline revised by J. Kalinski (prior to May 2002) and R. Bragdon (since May 2002)

Will this course be taught online? Yes___No__X

Course Title: Physics II				
Course Prefix &	Lecture Hours: 3	Lab Hours:2	Credit Hours: 4	
No.: PHYS131N		Recitation		
		Hour:1		
Department: Scien	ce and Engineering	Technology		
Program:				
Revision Date: 1/2016				

Prerequisites/ Co-requisites: PHYS130N Physics I

Entrance Skills: Without the following skills, competencies and/or knowledge, students entering this course will be highly unlikely to succeed: the ability to read a college level textbook, to write college level lab reports and to demonstrate college level math skills.

Catalog Description: A continuation of the study of physics at the non-calculus level. Topics include waves and sound, optics, electricity and magnetism, atoms, nuclei and modern physics.

Course Competencies:

Competency (Knowledge and Skills)	Critical Thinking Level	Linked to Program Outcome(s) #
Students will be able to:		
1. Apply mathematical skills, at the algebraic level, to analyze physical situations.	Knowledge, Application, Analysis	
2. Demonstrate problem solving skills in problems concerning physical situations.	Knowledge, Application, Analysis	
3. Explain the relevance and importance of physics to everyday experiences.	Knowledge, Application, Analysis	
4. Demonstrate lab techniques based on the scientific method.	Knowledge, Application	
5. Demonstrate the ability to communicate both qualitative and quantitative information, orally and written.	Comprehension, Application	

Course Outline:

Waves and Sound Wave Optics	 A. The Wave Model B. Travelling Waves C. Power and Intensity in Waves D. The Doppler Effect E. Superposition and Wave Interference F. Standing Waves G. Strings, Tubes and Harmonics A. Thin Film Interference B. Single- and Double-Slit Interference C. Diffraction 		
Geometric Optics	 A. Reflection B. Refraction C. Thin Lenses D. Ray Tracing and Optical Instruments 		
Electricity	 A. Electric Charge B. Coulomb's Law C. The Electric Field D. Electric Potential E. Capacitors 		
Simple Circuits	 A. Current and Resistance B. Ohm's Law C. Series and Parallel Circuits D. Kirchoff's Laws E. RC Circuits 		
Magnetism	 A. Magnets and Magnetic Fields B. Sources of Magnetic Fields C. Ampere's Law D. Motion of a Charged Particle in a Magnetic Field E. Faraday's Law F. EM Waves 		
AC Circuits (Time Permitting)	 A. Transformers B. Inductors C. RL Circuits D. Oscillator (RLC) Circuits 		

Modern Physics	 A. Uncertainty Principle B. Atomic Energy Levels and Transitions C. Special Theory of Relativity D. Nuclear Physics

Performance Evaluation:

Formative Assessments	Summative Assessments
Homework Assignments Lab Reports Quizzes	Unit Exams Final Exam

Method of Instruction:

Lecture with Demonstrations Hands on Lab Activities Individual and Collaborative Learning Interactive Computer Activities

Instructional Facilities: Fully equipped Physics Lab with Computer Based Lab Equipment

Suggested Texts and Material: College Physics: A Strategic Approach; 3rd Edition; Knight, Jones & Field; Pearson 2014

A scientific calculator

Revision History: Outline Developed: January 1995 Dates of Revisions: August 1998, May 1999, May 2002, May 2004, September 2005 (text and numbering), November 2006 (text), September 2007 (text), September 2011 (text), May 2013 (format) May 2014 – Revised Content and added recitation hour January 2016 – Revised content (added waves/sound from Physics I)

Outline developed by J. Kalinski Outline revised by J. Kalinski (prior to May 2002) and R. Bragdon (since May 2002)

Will this course be taught online? Yes No X

If yes, please complete the Online Course Outline Form.

Course Title: Human Relations				
Course Prefix &	Lecture Hours:	Lab Hours:	Credit Hours:	
No.: PSYC130N	3	0	3	
Department: Education and Applied and Behavioral Sciences				
Revision Date: 3/2013				

Entrance Skills:

There are no course prerequisites for this class but students having good writing and oral expression skills will have a better chance of successful completion of this course.

Catalog Description: This course will promote student exploration of intrapersonal (within self) and interpersonal (between self and others) aspects of human relationships. An understanding of basic psychological concepts and their connection to interpersonal relationships will be presented. Integration of effective communication, stress reduction, and team and leadership strategies in both the home and workplace will be encouraged.

Course Competencies:

Competency (Knowledge and Skills)	Critical Thinking Level	Linked to Program
(M (S))		Outcome(s) #
Students will be able to:		
1. Define and describe basic	Knowledge and	
psychological concepts as they	Comprehension	
relate tohuman relationships.		
2. Describe basic concepts	Comprehension and	
related to personality and apply	Application	
to understanding of self and		
others.		
3. Define emotion and analyze the	Knowledge, Analysis and	
role itnas on individual benavior.	Synthesis	
4. Describe effective	Application and Evaluation	
networks and promote student		
assessment of their own		
communication styles.		
5. Define stress and identify the	Comprehension, Analysis and	
effect ithas on behavior and	Synthesis	
performance.		
6. Critically analyze the role	Analysis	
human factors play in one's		
ability to be an effective		
worker.		
7. Identify characteristics	Analysis and Evaluation	
associated withteamwork and leadership and evaluate one's		
application of those characteristics		
apprication of mose characteristics.	Analysis, Evaluation and	
8. Compare strategies		
intended to improve		
difficult relationships.	SynthesisApplication	
9. Synthesize and apply		
knowledge ofhuman	and Synthesis	
relationships to professional		
settings.		

Course Outline: The course outline will provide a general overview of the content that will be included in the course as they relate to the competencies. The first column lists the general content and the second column will allow for subtopics that will be covered.

Content Topic	Subtopics (a., b., etc.)
Introduction and Overview	
About Communication	 A. Nature Vs. Nurture –Influence on Communication B. Communication Needs C. Models of Human Communication D. Why Interpersonal Communication Matters E. Identifying Competent Communication
Culture and Gender	 A. Understanding How Culture Affects Communication B. Understanding How Gender Affects Communication
Intrapersonal Communication	A. Understanding Self-ConceptB. Self-EsteemC. Communicating the Self-Self DisclosureD. Exampling Emotional Regulation
Interpersonal Communication Skills	A. The Nature of LanguageB. The Use and Abuse of WordsC. Improving Language Use

Nonverbal Communication	A Functions of Nonverbal Communication
Nonverbal Communication	B. Ten Channels of Nonverbal
	Communication
	Communication
	C. Exhibiting Appropriate Nonverbal
	Communication Skills
Listening	A. Listening Effectively
	B. Types of Listening
	C. Identifying Barriers to Effective Listening
	D. Becoming an Effective Listener
Emotion	A. Understanding Emotions
	B. Influences on Emotional Expression
	C. Demonstrating Effective Emotional
	Communication Skills
Interpersonal Communication in Professional	A. Social Relationships in the Workplace
Relationships	B. Utilizing Effective Communication with
	Co-workers, Superiors and Subordinates
Later and a 1 D station stilling in D successfield and	A Effective Communication in Domontia
Equilar Delationships in Romanic and	A. Effective Communication in Romantic
Family Relationships	Relationships
	B. Effective Communication in Families
	B. Creating a Positive Communication
	Climate
Internet of Conflict	A Defining Internetical Conflict
Interpersonal Conflict	A. Defining interpersonal Conflict
	B. Identification of Common Conflict Sources
	C. Deceptive Communication
	D. Applying Strategies to Manage Conflict
	Successiuity

Performance Evaluation: In this section please explain the different Assessment Tools that will be used to demonstrate student learning. The assessment ideally should include quantitative measures such as standardized tests, essays, locally-developed tests and if applicable, licensure exams. Qualitative measures such as portfolios of student work, written reports, oral presentations and interviews should be included as well.

Formative Assessments	Summative Assessments
Quizzes Class Discussions Small Group Work Reflective Essays	Group Project Group Oral Presentation Final Paper

Method of Instruction:

Lecture Group Discussion Small group work You Tube Videos Journal Articles Online Articles and Viewings Student Presentations

Instructional Facilities:

Computer

Revision History

Date Outline Developed: May 1994 Dates of Revision: October 1998, May 2005, November 2010 Reviewed Sept 2007 Revised: Fall 2012 J.Barnes Reviewed: March 2013 J.Barnes

Will this course be taught online? Yes <u>No_x</u>